skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cao, Liang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study investigates the experimental response of a hybrid shape memory alloy (SMA) cable-friction damping device with a specific focus on the failure behavior and reparability of the damper when tested at extreme deformations. The superelastic friction damper (SFD) is a hybrid seismic protection device that combines the high tensile strength and re-centering capability of superelastic SMA cables with stable, repeatable energy dissipation of a friction-based damping system. In this paper, the fabrication of a prototype damper and its experimental testing are discussed. The response of the SFD’s friction and self-centering mechanisms were separately evaluated considering design level deformations, cyclic loading, and large deformations up to failure. The performance of the device after the repair of failed components was also investigated. Findings from the study show that the SFD reached failure at a deformation level that exceeded the design displacement by a factor of 2.2. The force capacity of the SFD at the failure stage was 46% higher than the maximum force at the design deformations. After replacing the failed SMA cables, the damper’s mechanical response was identical to the pre-failure response, illustrating the device’s ability to be restored without hindering performance. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. ABSTRACT Real‐time hybrid simulation (RTHS) is an experimental testing methodology that divides a structural system into an analytical and an experimental substructure. The analytical substructure is modeled numerically, and the experimental substructure is modeled physically in the laboratory. The two substructures are kinematically linked together at their interface degrees of freedom, and the coupled equations of motion are solved in real‐time to obtain the response of the complete system. A key challenge in applying RTHS to large or complex structures is the limited availability of physical devices, which makes it difficult to represent all required experimental components simultaneously. The present study addresses this challenge by introducing Online Cyber‐Physical Neural Network (OCP‐NN) models–neural network‐based models of physical devices that are integrated in real‐time with the experimental substructure during an RTHS. The OCP‐NN framework leverages real‐time data from a single physical device (i.e., the experimental substructure) to replicate its behavior at other locations in the system, thereby significantly reducing the need for multiple physical devices. The proposed method is demonstrated through RTHS of a two‐story reinforced concrete frame subjected to seismic excitation and equipped with Banded Rotary Friction Dampers (BRFDs) in each story. BRFDs are challenging to model numerically due to their complex behavior which includes backlash, stick‐slip phenomena, and inherent device dynamics. Consequently, BRFDs were selected to demonstrate the proposed framework. In the RTHS, one BRFD is modeled physically by the experimental substructure, while the other is represented by the OCP‐NN model. The results indicate that the OCP‐NN model can accurately capture the behavior of the device in real‐time. This approach offers a practical solution for improving RTHS of complex structural systems with limited experimental resources. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  3. Natural hazards, including hurricanes and earthquakes, can escalate into catastrophic societal events due to the destruction of the built environment. To minimize the impact of such hazards on vulnerable communities, civil infrastructure must be designed with performance criteria that prioritize public safety and ensure continuous operation. The National Science Foundation funded Natural Hazards Engineering Research Infrastructure (NHERI) program focuses on advancing the development of resilient infrastructure. The NHERI Lehigh Real-time Multi-directional Simulation Experimental Facility (EF) is one of the facilities within this program. The facility serves as an open-access research hub, offering advanced technologies and engineering tools to develop innovative solutions for natural hazard mitigation. It is uniquely equipped to perform large-scale, multi-directional structural testing in real-time using a cyber-physical simulation technique known as real-time hybrid simulation. This technique enables researchers to model entire systems subjected to dynamic loads at a full scale, allowing for realistic assessments of infrastructure responses to specific hazard scenarios and the development of effective mitigation strategies. This paper explores how cyber-physical simulation has revolutionized research in natural hazards engineering and its influence on engineering practices. It highlights several ongoing projects at the NHERI Lehigh EF aimed at enhancing community resilience in hazard-prone regions. The paper also discusses the planned expansion of the EF, which aims to broaden its focus to include a wider range of natural hazards, and infrastructure systems. This expansion will incorporate both physical and computational resources to enhance the understanding of fluid interactions in combined natural hazards and climate change impacts on coastal and offshore infrastructure. The NHERI Lehigh EF represents a transformative facility that is reshaping natural hazards research and will continue to play a pivotal role in the development of risk management strategies for more resilient communities. 
    more » « less
    Free, publicly-accessible full text available March 19, 2026
  4. Modeling dry friction is a challenging task. Accurate models must incorporate hysteretic rise of force across displacement and non-linearity from the Stribeck effect. Though sufficiently accurate models have been proposed for simple friction systems where these two effects dominate, certain rotational friction systems introduce self-energizing and accompanying backlash effects. These systems are termed self-energizing systems. In these systems, the friction force is amplified by a mechanical advantage which is charged through motion and released during reversing the direction of travel. This produces energized and backlash regimes within which the friction device follows different dynamic behaviors. This paper examines self-energizing rotational friction, and proposes a combined physics and machine learning approach to produce a unified model for energized and backlash regimes. In this multi-process information fusion methodology, a classical LuGre friction model is augmented to allow state-dependent parameterization provided by a machine learning model. The method for training the model from experimental data is given, and demonstrated with a 20 kN banded rotary friction device used for structural control. Source code replicating the methodology is provided. Results demonstrate that the combined model is capable of reproducing the backlash effect and reduces error compared to the standard LuGre model by a cumulative 32.8%; in terms modeling the tested banded rotary friction device. In these experimental tests, realistic pre-defined displacements inputs are used to validate the damper. The output of the machine learning model is analyzed and found to align with the physical understanding of the banded rotary friction device. 
    more » « less
  5. Protecting both the essential building contents and the structural system—as well as facilitating and accelerating the post-event functionality of business operations—is a major concern during natural hazards. Floor isolation systems (FIS) with rolling pendulum bearings along with nonlinear fluid viscous dampers (NFVD) have been proposed to mitigate damage and enhance the resiliency of non-structural and structural systems, respectively. These devices are designed to decrease vibrations under dynamic loading conditions. In this poster, we introduce research using tridimensional nonlinear cyber-physical experimental testing (i.e., real-time hybrid simulations) to validate the performance of these response modification devices placed in structural systems under wind and earthquake loading conditions. The effects of soil-structure-foundation and fluid-structure interactions were also accounted for. The novelty of the project is the use of multi-directional large-scale real-time hybrid simulations of complex nonlinear systems under wind and earthquake demands to combine experimental structural modification passive devices with analytical multi-story buildings considering soil-foundation interaction via neural network. Results show that the FIS and NFVD can significantly reduce the demand on non-structural and structural systems of buildings subjected to natural hazards whose response can be also significantly affected by soil-foundation-structure interaction. A product of this research is the data (which is linked in Related Works), which can be used to compare with new studies using the same experimental techniques and structural modification devices or with alternative approaches. Researchers interested in multi-natural hazards resilience and mitigation, state-of-the-art structural experimental techniques, and the use of machine learning as a tool to improve modeling efficiency will benefit from its results. Also, companies dedicated to the commercial development of structural response modification devices, as well as policymakers working or with interest in economic and social resilience. 
    more » « less
  6. Rolling-pendulum (RP) isolation bearings with different surface treatments were tested under quasi-static, harmonic, and simulated earthquake-induced motions. These tests were used to characterize the behavior of the RP bearings, including the gravitational restoring force and the rolling resistance associated with the elastomeric coatings of different thicknesses. The experimental data from analog sensors and cameras is archived here, as documented in the data report. 
    more » « less
  7. This project will develop a new structural system that will protect buildings, their contents, and occupants during large earthquakes and will enable immediate post-earthquake occupancy. This earthquake-resilient structural system will be particularly valuable for essential facilities, such as hospitals, where damage to buildings and contents and occupant injuries must be prevented and where continuous occupancy performance is imperative. The new system will use practical structural components to economically protect a building from damaging displacements and accelerations. The project team will collaborate with Japanese researchers to study the new system with full-scale earthquake simulations using the 3D Full-Scale Earthquake Testing Facility (E-Defense) located in Miki, Japan, and operated by the National Research Institute for Earth Science and Disaster Resilience. This project will advance national health, prosperity, and welfare by preventing injuries and loss of human life and minimizing social and economic disruption of buildings due to large earthquakes. An online course on resilient seismic design will be developed and offered through the American Institute of Steel Construction night school program, which will be of interest to practicing engineers, researchers, and students across the country. This project contributes to NSF's role in the National Earthquake Hazards Reduction Program. The novel steel frame-spine lateral force-resisting system with force-limiting connections (FLC) that will be developed in this project will control multi-modal seismic response to protect a building and provide resilient structural and non-structural building performance. This frame-spine-FLC system will rely on a conventional, economical base system that resists a significant proportion of the lateral load. The system judiciously employs floor-level force-limiting deformable connections and an elastic spine to protect the base system. Integrated experiments and numerical simulations will provide comprehensive understanding of the new frame-spine-FLC system, including rich full-scale experimental data on building seismic performance with combined in-plane, out-of-plane, and torsional response under 3D excitation. The FLCs will be tested using the NHERI facility at Lehigh University. This project will be conducted in collaboration with an ongoing synergistic research program in Japan. The extensive dataset from this integrated U.S.-Japan research program will enable unique comparisons of structural and non-structural performance, including critical acceleration-sensitive hospital contents that directly affect the health and safety of patients. In addition, the dataset will enable the advancement of computational modeling for the assessment of building performance and the development of practical, accurate models for use in design that capture the complex 3D structural response that occurs during an earthquake. 
    more » « less
  8. This project will develop a new structural system that will protect buildings, their contents, and occupants during large earthquakes and will enable immediate post-earthquake occupancy. This earthquake-resilient structural system will be particularly valuable for essential facilities, such as hospitals, where damage to buildings and contents and occupant injuries must be prevented and where continuous occupancy performance is imperative. The new system will use practical structural components to economically protect a building from damaging displacements and accelerations. The project team will collaborate with Japanese researchers to study the new system with full-scale earthquake simulations using the 3D Full-Scale Earthquake Testing Facility (E-Defense) located in Miki, Japan, and operated by the National Research Institute for Earth Science and Disaster Resilience. This project will advance national health, prosperity, and welfare by preventing injuries and loss of human life and minimizing social and economic disruption of buildings due to large earthquakes. An online course on resilient seismic design will be developed and offered through the American Institute of Steel Construction night school program, which will be of interest to practicing engineers, researchers, and students across the country. This project contributes to NSF's role in the National Earthquake Hazards Reduction Program. The novel steel frame-spine lateral force-resisting system with force-limiting connections (FLC) that will be developed in this project will control multi-modal seismic response to protect a building and provide resilient structural and non-structural building performance. This frame-spine-FLC system will rely on a conventional, economical base system that resists a significant proportion of the lateral load. The system judiciously employs floor-level force-limiting deformable connections and an elastic spine to protect the base system. Integrated experiments and numerical simulations will provide comprehensive understanding of the new frame-spine-FLC system, including rich full-scale experimental data on building seismic performance with combined in-plane, out-of-plane, and torsional response under 3D excitation. The FLCs will be tested using the NHERI facility at Lehigh University. This project will be conducted in collaboration with an ongoing synergistic research program in Japan. The extensive dataset from this integrated U.S.-Japan research program will enable unique comparisons of structural and non-structural performance, including critical acceleration-sensitive hospital contents that directly affect the health and safety of patients. In addition, the dataset will enable the advancement of computational modeling for the assessment of building performance and the development of practical, accurate models for use in design that capture the complex 3D structural response that occurs during an earthquake. 
    more » « less
  9. Specimen 2 was created to combat some of the issues found from the static testing of Specimen 2. The base dimension was increased from 1.5” to 2”. The width of the cantilever was also decreased to increase the flexibility of the element. Static testing of Specimen 2 revealed that the element flexibility was increased to achieve a stiffness of 83 k/in resulting in larger post-yielding deformation. Yielding occurred in the cantilever area only. 
    more » « less